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Two-dimensional Poisson problems are commonly solved by one of three direct methods: 
cyclic reduction (CR), Fourier analysis (FA), or a combination of FA and CR (FACR). 
It has been shown that FACR requires the least amount of computation and CR the most. 
All of these methods employ one-dimensional solvers embedded in the algorithms for 
solving the two-dimensional problem. These methods can be used to solve three-dimen- 
sional systems if the one-dimensional solver is replaced with a two-dimensional solver. 
In three dimensions FACR and FA require almost the same number of operations if the 
two-dimensional solver is FACR. Further, the three-dimensional CR using CR to solve 
the two-dimensional systems requires a much larger number of operations in comparison 
with any of the other approaches considered. This information is illustrated using a staggered 
grid with Neumann boundary conditions. The operation counts for this problem are derived 
so that they are applicable even if the number of mesh points in any direction is small. 
The FFT algorithm required when using FA is presented. The FA algorithm is simpler 
to code than FACR. A comparison of run times between CR and FA (using CR to solve the 
twodimensional systems) is given for several mesh sizes. The results agree with the operation 
count comparisons. Some input-output considerations for coding problems which require 
auxiliary storage are also discussed. 

1. INTR~DuC~~N 

Direct methods for solving the discrete Poisson equation over a two-dimensional 
rectangular domain have been discussed extensively in the literature. Commonly used 
methods include cyclic reduction (CR), Fourier analysis (FA), and a combination of 
cyclic reduction and Fourier analysis (FACR). Swarztrauber [6] has reviewed these 
methods for solving U,, + U,, = f(x, y) on a N x A4 nonstaggered mesh with 
various boundary conditions. He gives asymptotic operations counts for Dirichlet 
boundary conditions of 3N log, M for CR, 2N log, M for FA, and 3N log, log, M 
for FACR, where M = 2” - 1. These asymptotic operations counts also appear 
to be valid for periodic (M = 2”) and Neumann (M = 2” + 1) boundary conditions. 
They indicate FACR to be superior, followed by Fourier analysis and then cyclic 
reduction. 

The main purposes of this paper are to discuss how these methods can be extended 
effectively to three dimensions and how their operation counts compare in three 

319 
Copyright 0 1977 by Academic Press, Inc. 
All rights of reproduction in any form reserved. ISSN 0021-9991 



320 WILHELMSON AND ERICKSEN 

dimensions. An increasing number of fluid flow models now require three-dimensional 
Poisson solutions. This includes one of the author’s cumulus cloud models [8]. The 
particular problem considered here is 

u,, + u,, + uz* = f (x9 YT z> in R, 

u, = 0 on the boundary of R, 

(14 

(lb) 

where R is a rectangular box defined by R = (x, y, z): 0 < x < X, 0 < y < Y, 
0 < z < 2, and n represents the normal derivative. A staggered grid is used because of 
its convenience in fluid flow problems. It is defined by Ri,j,k = (xi , yi , z,): 
xi = (i - l/2) LX, i = 0, 1,2 ,...) L + 1, yj = (j - l/2) dy, j = 0, I,2 )..., M + 1, 
Zk = (k - l/2) AZ, k=0,1,2 ,..., N+ 1 where L&=X, Mdy= Y, and 
N LIZ = Z. The seven point star used to approximate (la) is 

[ui+l*j.k + kI,i,kl/@42 + hi-Lk + ~i.i-I.kl/(~Y)2 
+ b4,j.kfl + ~~,~.~c-II/(~Z)~ - 2111(dx)2 + llCdYJ2 + 1/(4z)21 %,i.k = fr,i.k 9 C2) 

where u represents the finite difference solution. The Neumann boundary conditions 
are approximated by second order differences (e.g., [u,,~,~ - ~~,~,Jdx = 0 at the 
i = 8 boundary). If U,, # 0 then f can be modified so that the boundary condition 
is zero (e.g., see [9]). 

The general algorithm for solving (2) consists of replacing the one-dimensional 
solvers in the two-dimensional CR, FA, and FACR algorithms by two-dimensional 
solvers. These two-dimensional solvers could be CR, FA, or FACR. Several of the 
possible combinations are discussed. Operation counts for selected dimensions are 
derived keeping in mind that L, M, and N are frequently small, i.e., <65. An operation 
is defined as an add or subtract plus a multiply or divide. Then, input-output 
algorithms that can be coupled with the outlined methods are discussed since even 
with dimensions of 65, auxiliary storage is often needed. Finally, some general 
comments will be made and some actual test cases presented. 

2. METHODS FOR SOLVING POISSON'S EQUATION 

2.1. A Cyclic Reduction Method (CR) 

By multiplying (2) by (LIz)~, the equation for the kth x-y plane can be written 

This type of block tridiagonal system can be solved using CR. After r levels of 
reduction the equation for the kth x-y plane is 



where 
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fp = -(LlZ)$f k9 
h = 2’-l, J(o) = -J 

, 

J(r) = [JhI)]2 - 21 

= i (J’O’ - 

J= I 

A+C 
c 

2 cos[(2j - 1) ?7/2’+1] I), 

C 
A C 
C A C 

C A C 
c AS-C 

and A is the L square matrix 

i 

b+a a 
a b 

a 
A= 

a 
b 

a 

b = -2[1 + (Az/Ax)~ + @z/~Iy)~], 

(4) 

a = (Az/~x)~, c = (Az/Lly)V. 

In this paper the mesh size in z has been constrained to N = 2a+1 + 1, where the z 
direction has been arbitrarily chosen for the reduction process. Round-off error 
becomes a problem when computing the right-hand side of (3). The Buneman variant 
eliminates this problem. Sweet [7] presents this method using 

where 

ff) = J($$, + &) (5) 

qp = jy, (0) pk = 0, 

qk (l) = q$!1 + q!o+)1 + 2p$‘, 

and for r > 1 

Pk 
(d = [JkI)]-1 [&+b-l’ + pb-;l) + &-1’1 + pt-“. 
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The general recurrence relationships for pr’ and q,!J’ can be written so that only the 
qr”s need to be stored. For example, initially 

qp = qr+1 * qf!)l f 2[J’o’]-lq$’ (0) (6) 

for k = 3, 5, 7 ,..., N - 2. One can then determine qk (I) for a given k using (6) and the 
solution, X, of the two-dimensional system J(O)X = qk . (O’ This first level of reduction 
requires solving (N + 1)/2 two-dimensional systems as indicated in Table I. This 
includes the special cases for k = 1 and k = N which involve different J’s but the 
same formula (6) provided that planes indexed outside the subscript limits are 
considered to be zero. The next n - 1 levels of reduction can be written 

for h = 2T-1, k = 1, 1 + 4h, 1 + 8h ,..., N and r = 1, 2 ,..., n - 1. Again for k = 1 
and N the J’s are specially defined and indexed elements outside subscript limits are 
zero. Here 2’ two-dimensional systems need to be solved for each k as seen from (7) 
and the product (4) The resulting number of two-dimensional problems for each 
reduction level is 2F[N/2’+1] where [G] is the smallest integer greater than or equal to G. 
This can be approximated as (N + 1)/2. The next steps involve solving for qfn+l), 
u1 , ui , and U, where i = 1 + 2” and the +‘s for k = l,..., N form the solution to (2). 
A back substitution process involving known URIS can then be used to fill out the 
solution according to Sweet’s basic algorithm. The number of two-dimensional 
solutions required is given in Table I along with the approximate number for the 
entire three-dimensional solution, (N - l)(log,(N - 1) + 2). Note that the term 2 
adds significantly to the two-dimensional system count for smaller N. These systems 
can be solved by any two-dimensional method that solves L x M systems for the 
x and y boundary conditions. 

Assuming the CR method as given by Sweet [7] is used and reduction is performed 
in the y direction where M = 2” + 1, then (M - l)(log,(M - 1) + 2) tridiagonal 
systems of arbitrary dimension L need to be solved per two-dimensional system. 
Each tridiagonal system requires 3L operations. The total operation count for solving 
the three-dimensional system is then 3L(M - l)(N - l)(log,(M - 1) + 2) 
(log.@ - 1) + 2). 

2.2. Fourier Analysis (FA) 

Fourier analysis can also be used in the z direction to reduce (2) to N separate 
two-dimensional systems. The reduction is accomplished by analyzing f using 
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where j* and fk are two-dimensional x-y arrays. The resulting N two-dimensional 
systems can be written as 

u,(i + 1, j) + u,(i - 1, j) + W, j + 1) + %(4j - 1) 
(W (41~)~ 

-2 [(A,” + &I” + GA’ (1 - cos[(s - 1) qvl)] W,j) = $8f,(hd (9) 

for s = 1, 2,..., N. The systems represented by (9) are solved for ii, using a two- 
dimensional Poisson solver. The fi, values are then transformed into the solution uk: 
using Fourier synthesis, i.e., 

uk = 5 E&i, cos[(k - 1/2) Az(s - 1) rr/(NAz)], (10) 
S=l 

E, = l/N ifs= 1 
= 2[N otherwise. 

The transforms used for Fourier analysis (8) and Fourier synthesis (10) are 
dependent on the boundary conditions in the z direction. To calculate these transforms 
efficiently the transforms are converted into standard Fourier transforms for which 
fast Fourier transform (FFT) routines are readily available. Cooley et al. [I], used 
this approach in calculating transforms for Neumann, Dirichlet, and periodic 
boundary conditions on a nonstaggered grid. Their standard transform was the 
complex FFT routine. Appropriate pre- and postprocessing was developed. 
Swarztrauber [6] extended this work to include combinations of the above boundary 
conditions in the same direction. Pre- and postprocessing for Neumann boundary 
conditions on a staggered grid can also be developed in a similar manner. They follow. 

Fourier analysis (8) is initiated using the preprocessing 

01 = 2fi 3 UN = 2fN, 
v2k = f2k + f2k+l > (11) 

%k+l = 2k - f2k+l * f 

The v’s are supplied to a library routine for periodic Fourier synthesis using the 
equation 

N/2-1 

tis = [VI + (-1)%,]/2 + c [v2k c0s[2k(.S - 1) n/N] 
k=l 

+ u2k+l sin[2k(s - 1) v/N]]. 

Postprocessing of 5, is required to get fs, i.e., 

(12) 

(13) 
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for s = 2 ,..., N, a = sin[(s - 1)77/2N], and b = cos[(s - 1)77/2N]. This completes 
the analysis. 

After solving the two-dimensional systems (9) Fourier synthesis on U, will give the 
solution using (10). The preprocessing needed to’compute uk from U, is 

w, = ii, ) 
(14) 

W, = [(a + b)Us + (a - b)uN-s+J. 

The values of W, are supplied to a library routine for periodic Fourier analysis using 
the equations 

Nwl = 5 W, , NwN = i Ws(-1)s-1, 
S=l s=1 

Nw,~ = f W, cos[2k(s - 1) n/N], 
S=l 

(15) 

Nws+l = gl W, sin[2k(s - 1) VT/N]. 

Finally, postprocessing gives 

Ul = Wl, UN = WN, 

u2k = W2k + W2k+l > (16) 

U2k+l = w2k - W2k+l* 

Routines for periodic Fourier analysis (15) and synthesis (12) are available in many 
subroutine libraries and require N log, N/2 multiplies and N(1.5 log, N/2 + 1) adds 
for an N-element transform. If these routines are not available in the reader’s library 
they can be written using a library complex FFT routine and the pre- and post- 
processing outlined in Cooley, et al. [l]. The pre- and post-processing given by (11) 
and (13) require 2LMN multiples and 2LA4N adds. Thus, Fourier analysis for 
Neumann boundary conditions on a staggered grid requires LA4 transforms (12) 
and the pre- and post-processing, (11) and (13), for a total of LMN(log, N + 1) 
multiplies and l.SLMN(log, N + 1) adds. The synthesis, (14)-(16), requires the same 
number of multiplies and adds. The time for both the analysis and synthesis can then 
be approximated by 2LMN(log, N + 1) operations provided adds require consid- 
erably less time than multiplies. 

If the two-dimensional systems are solved using FFT in y (n/r = 2”) followed by 
solving M tridiagonal systems of arbitrary size L the total operation count becomes 
LMN(2 log, N + 2 log, M + 7) where three of the seven account for the tridiagonal 
solutions. The two-dimensional systems might also be solved using cyclic reduction 
and expansion requiring approximately 3L(M - l)(log,(M - I) + 2) operations 
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per system. The total operation count would then increase to LMN(2 log, N + 2) + 
3L(M - 1) N(log,(M - 1) + 2). Another possibility is to solve the two-dimensional 
systems using FACR as discussed in the next section. 

2.3. Fourier Analysis and Cyclic Reduction (FACR) 

Hackney [2] has developed the FACR algorithm for solving the Poisson equation. 
It combines Fourier analysis and cyclic reduction to improve the solution speed over 
either method individually. Five basic steps are required: (1) perform 1 levels of cyclic 
reduction; (2) Fourier analyze the reduced system; (3) solve the resulting tridiagonal 
systems; (4) Fourier synthesize the reduced system; and (5) perform I levels of 
expansion. Consider first for clarity the solution of a two-dimensional M x N system 
using FACR where A4 = 2” and N = 2% + 1. Each level of reduction and expansion 
in steps 1 and 5 requires solving approximately N tridiagonal systems of length M 
(see Table I where the two-dimensional systems there are one-dimensional tridiagonal 
systems here). After I levels of reduction the resulting system is M x N’, where 
N’ = 2-z(N - 1) + 1. This resulting system can be solved by Fourier analyzing 
and synthesizing in M (steps 2 and 4) and solving tridiagonal systems of length N’ 
(step 3). The total operation count is then 3M(ZN) + MN’(2 log, M + 5) where IN 
is the number of tridiagonal solutions for steps 1 and 5. For simplicity one can 
assume N’ w 2-‘N with slight favoritism to the scheme so that the operation count 
can be written MN(31 + 2-‘(2 log, M + 5)). The optimum I equals the greatest lower 
integer bound of log,[(2 log, M + 5)/3]. For M = 64, the optimum lopt equals 2 
and the operation count per point is 0.5 log, M + 7.25 = 10.25. If the Fourier 
method is used (I = 0) the operation count per point would be higher, i.e., 
2 log, M + 5 = 17 (see Table III). The FACR algorithm can be used to solve the 
two-dimensional systems that occur in the Fourier method discussed in the last 
section. The operation count for the three-dimensional solver then becomes 
LMN[2 log, N + 2 + 31 + 2-z(2 log L + 5)]. 

When FACR is applied to a three-dimensional problem, steps 1, 3, and 5 require 
the solution of two-dimensional systems. For 1 levels of reduction and expansion in z 
(steps 1 and 5) ILMN(31’ + 2-z’(2 log, L + 5)) operations are required if FACR 
is used to solve the associated two-dimensional x-y systems. Here 1’ is the number of 
reductions in y for solving these two-dimensional systems. Fourier analysis and 
synthesis in x (steps 2 and 4) requires 2-zLMN(2 log, L + 2) operations. In step 3, 
y-x systems are solved by performing 1” - I reductions and expansions in z. This 
gives a total of 1” levels of reduction and expansion because I levels are performed 
in steps 1 and 5. The reduced systems of dimension h4 x 2-z”N are solved using FA. 
Step 3 requires LMN(3(1” - 2) + 2-z”(2 log, M + 5)) operations. The total operation 
count then becomes LMN[l(31’+ 2-z’(2 log, L + 5)) + 2-z(2 log, L + 2) + 3(Z” - I) + 
2-“‘(2 log, M + 5)]. The dimensions are restricted to L = 2”, M = 2”, and 
N = 2z’k + 1 where k is an integer. Steps 1 and 5 involve I’ reductions and expansions 
in y while step 3 requires the use of a FFT in y. Usually this would require M to be 
2z’j + 1 and 2”, respectively. By using Schumann and Sweet’s algorithm [3] for 
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reduction with arbitrary dimensions this approach can be used with M = 2”. Any 
increase in the number of operations is ignored here. The three-dimensional FACR 
does not seem practical to code since there is only a small difference between the 
operation counts for FACR and FA using FACR and since the FACR algorithm is 
more complicated (see Table III). 

3. SOME INPUT-OUTPUT CONSIDERATIONS 

Solutions to even small three-dimensional problems often require auxiliary storage. 
Input-output algorithms for moving data between core and auxiliary memory are 
then needed. Here a discussion of I/O is given with the intent of reducing the number 
of reads and writes necessary to solve (1). The common read or write unit considered 
is a plane. 

Cyclic reduction can be performed by calculating 4:“’ and uk planes. The number of 
planes that need to be calculated for each level of reduction is given in Table I in the 
second column and the number of planes of data required, in the fourth. The average 
number of planes read and written for each of the N solution (ale> planes is 11. The 
I/O can be reduced if planes used in the previous plane calculation are saved in core. 
The average number of planes read or written then reduces to eight as seen from 
column 6 of Table I. Further reduction of the I/O can be accomplished by reading 
blocks of four consecutive planes. When two of these blocks are in core the first two 
levels of reduction can be performed on all but the last plane in the second block. 
After this is accomplished the first block is written and the next block is read. Then 
the first two levels of reduction are performed on these data. The process continues 
until all blocks have been read. This eliminates all the I/O for the second reduction. 
Similarly all the I/O for the next to last expansion can be eliminated. This reduces the 
I/O to 54 read or writes per plane. 

The I/O for the Fourier method can in general be accomplished by (1) reading x-z 
(or y-z) planes, Fourier analyzing each in z and writing out the results; (2) reading 
and forming x-y planes, solving the two-dimensional x-y systems, and writing the 
results; and (3) forming x-z (or v--z) planes, Fourier synthesizing each in z and 
writing out the solution. The difficulty here is that if results from step 1 are written 
as x-z (or v-z) planes it will be hard to efficiently form x-y planes for step two. 
The reverse holds between step 2 and 3. One possible solution to this dilemma is to 
Fourier analyze as many x-z (or v-z) planes as possible in step 1 and then write then 
out as x-y-z blocks. A better solution exists if the two-dimensional solutions in step 2 
are themselves solved using Fourier analysis rather than cyclic reduction. In the first 
step x-z planes can be read and Fourier analyzed in both x and z. Further, the 
elimination phase of the tridiagonal solver can be performed in y and the result 
stored. All x-z planes can be processed consecutively from i = 1,2,..., L in this way. 
The second step is to perform the back substitution of the tridiagonal solver and 
Fourier synthesize as i proceeds from L, L - I,..., 1. This method requires four 
reads or writes per plane and requires only two x-z planes in memory at any time. 
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It is quite convenient since it is based on consecutive access of x-z planes that can be 
stored consecutively in auxiliary storage. 

This is also true if FA is used with FACR; however, more data are needed in core. 
Suppose two blocks of 2l x-z planes are contained in core where 1 is the number of 
levels of reduction. The general algorithm for the first half of the solution where 
blocks i - 1 and i are in core is (1) perform Fourier analysis on the z rows in block i, 
(2) perform the levels of reduction on the y dimension in block i, (3) perform Fourier 
analysis on the reduced x rows in block i, (4) perform the forward elimination on the 
y direction in block i, (5) write block i - 1 and read block i + 1. After passing through 
the data the process can be reversed to give the solution. 

TABLE III 

Actual Operation Counts per Point for 2” = 2’ = 2k 

\ 

2’ = 2” = 2x 
Method 16 32 64 128 256 

Three dimensions CR 

FA with FA 

FA with CR 

FA with FACR 
(hmt = 2) 

FACR 
(I = 1, I&, = l&, = 2 

Two dimensions CR 

FA 

FACR 
CLlt = 2) 

95.67 138.23 186.14 239.25 297.67 

23 27 31 35 39 

26.94 32.36 37.63 42.79 47.88 

19.25 21.75 24.25 26.75 29.25 

20.5 22.5 24.5 26.5 28.5 

16.94 20.36 23.63 26.79 29.88 

13 15 17 19 21 

9.25 9.75 10.25 10.75 11.25 

4. CONCLUSIONS 

The operation counts for the various methods previously discussed are summarized 
in Table II. Table III contains some actual calculations using these formulas where 
all the dimensions are the same, i.e., 2” = 2i = 2”. For the two-dimensional problem 
cyclic reduction (CR) takes about twice the time of FACR with optimal I while 
Fourier analysis (FA) takes roughly the average of CR and FACR. In three dimensions 
a noticeable change occurs. Cyclic reduction takes roughly five times as long as FACR. 
Further, FACR is not consistently the fastest scheme. Fourier analysis in z with FACR 
used to solve the resulting two-dimensional systems is fastest when the dimensions are 
smaller than 128. FA with FACR is recommended for solving three-dimensional 
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problems because of its speed in relation to CR and its simplicity in relation to FACR. 
If a two-dimensional FACR program is not available any direct two-dimensional 
solver may be substituted with a slight sacrifice in speed as shown in Table III. 

Several test cases were run on the CDC 7600 at the National Center for Atmospheric 
Research using CR and FA with CR. The results are given in Table IV. A FACR 
code was not written. The theoretical ratios compare quite favorably with the 
calculated ratios despite the fact that neither code is fully optimized. This helps to 
confirm the reasonableness of the nonasymptotic operational counts obtained in this 
paper. 

TABLEIV 

A Comparison of Derived Operational Counts with Actual Timings Using a CDC 7600” 

Method 
Operation Timing/ 

Mesh size count/point R point R 

CR 30 x 65 x 65 186.14 24.0 
5.0 4.9 

FA with CR 30 x 65 x 64 37.63 4.9 

CR 15 x 65 x 65 186.14 25.0 
5.0 5.0 

FA with CR 15 x 65 x 64 37.63 5.0 

CR 15 x 33 x 65 165.42 22.0 
4.8 4.8 

FA with CR 15 x 33 x 64 34.36 4.6 

a The timing/point is in units of lo+ set and R is the ratio of the preceding counts or timings. 

Although the discussion has been limited to a staggered grid with Neumann 
boundary conditions the general results should apply to Dirichlet or periodic boundary 
conditions and also to nonstaggered grid problems. This is because the operation 
counts for these problems should be similar to those given in this paper. 

The methods discussed in this paper can be generalized. Cyclic reduction can be 
used to solve separable elliptic equations as discussed by Swarztrauber [5]. If Fourier 
analysis is used only the separable coefficients of the dimensions analyzed need be 
constant (e.g., see [S]). Further, cyclic reduction and Fourier analysis can be performed 
on grid sizes other than 2k + 1 and 2”, respectively. Schumann and Sweet [3] have 
discussed this for the former and Singleton [4] for the latter. 
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